Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
We present a method for reconstructing 3D shape of arbitrary Lambertian objects based on measurements by miniature, energy-efficient, low-cost single-photon cameras. These cameras, operating as time resolved image sensors, illuminate the scene with a very fast pulse of diffuse light and record the shape of that pulse as it returns back from the scene at a high temporal resolution. We propose to model this image formation process, account for its non-idealities, and adapt neural rendering to reconstruct 3D geometry from a set of spatially distributed sensors with known poses. We show that our approach can successfully recover complex 3D shapes from simulated data. We further demonstrate 3D object reconstruction from real-world captures, utilizing measurements from a commodity proximity sensor. Our work draws a connection between image-based modeling and active range scanning and is a step towards 3D vision with single-photon cameras.more » « less
-
Single-photon 3D cameras can record the time of arrival of billions of photons per second with picosecond accuracy. One common approach to summarize the photon data stream is to build a per-pixel timestamp histogram, resulting in a 3D histogram tensor that encodes distances along the time axis. As the spatio-temporal resolution of the histogram tensor increases, the in-pixel memory requirements and output data rates can quickly become impractical. To overcome this limitation, we propose a family of linear compressive representations of histogram tensors that can be computed efficiently, in an online fashion, as a matrix operation. We design practical lightweight compressive representations that are amenable to an in-pixel implementation and consider the spatio-temporal information of each timestamp. Furthermore, we implement our proposed framework as the first layer of a neural network, which enables the joint end-to-end optimization of the compressive representations and a downstream SPAD data processing model. We find that a well-designed compressive representation can reduce in-sensor memory and data rates up to 2 orders of magnitude without significantly reducing 3D imaging quality. Finally, we analyze the power consumption implications through an on-chip implementation.more » « less
An official website of the United States government

Full Text Available